Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Braz J Microbiol ; 54(4): 2893-2901, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37930615

RESUMO

The gold standard for diagnosing COVID-19 in the acute phase is RT-qPCR. However, this molecular technique can yield false-negative results when nasopharyngeal swab collection is not conducted during viremia. To mitigate this challenge, the enzyme-linked immunosorbent assay (ELISA) identifies anti-SARS-CoV-2 IgM antibodies in the initial weeks after symptom onset, facilitating early COVID-19 diagnosis. This study introduces a novel and highly specific IgM antibody capture ELISA (MAC-ELISA), which utilizes biotinylated recombinant SARS-CoV-2 nucleocapsid (N) antigen produced in plants. Our biotinylated approach streamlines the procedure by eliminating the requirement for an anti-N-conjugated antibody, circumventing the need for peroxidase-labeled antigens, and preventing cross-reactivity with IgM autoantibodies such as rheumatoid factor. Performance evaluation of the assay involved assessing sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy using 682 RT-qPCR-positive samples, categorized by weeks relative to symptoms onset. Negative controls included 205 pre-pandemic serum samples and 46 serum samples from patients diagnosed with other diseases. Based on a cut-off of 0.087 and ROC curve analysis, the highest sensitivity of 81.2% was observed in the 8-14 days post-symptom (dps) group (2nd week), followed by sensitivities of 73.8% and 68.37% for the 1-7 dps (1st week) and 15-21 dps groups (3rd week), respectively. Specificity was consistently 100% across all groups. This newly developed biotinylated N-MAC-ELISA offers a more streamlined and cost-effective alternative to molecular diagnostics. It enables simultaneous testing of multiple samples and effectively identifies individuals with false-negative results.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , Teste para COVID-19 , SARS-CoV-2 , Ensaio de Imunoadsorção Enzimática/métodos , Imunoglobulina M , Anticorpos Antivirais , Nucleocapsídeo , Sensibilidade e Especificidade
2.
Trop Plant Pathol ; : 1-9, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37362078

RESUMO

Frequent monitoring of emerging viruses of agricultural crops is one of the most important missions for plant virologists. A fast and precise identification of potential harmful viruses may prevent the occurrence of serious epidemics. Nowadays, high-throughput sequencing (HTS) technologies became an accessible and powerful tool for this purpose. The major discussion of this strategy resides in the process of sample collection, which is usually laborious, costly and nonrepresentative. In this study, we assessed the use of sewage water samples for monitoring the widespread, numerous, and stable plant viruses using HTS analysis and RT-qPCR. Plant viruses belonged to 12 virus families were found, from which Virgaviridae, Solemoviridae, Tymoviridae, Alphaflexiviridae, Betaflexiviridae, Closteroviridae and Secoviridae were the most abundant ones with more than 20 species. Additionally, we detected one quarantine virus in Brazil and a new tobamovirus species. To assess the importance of the processed foods as virus release origins to sewage, we selected two viruses, the tobamovirus pepper mild mottle virus (PMMoV) and the carlavirus garlic common latent virus (GarCLV), to detect in processed food materials by RT-qPCR. PMMoV was detected in large amount in pepper-based processed foods and in sewage samples, while GarCLV was less frequent in dried and fresh garlic samples, and in the sewage samples. This suggested a high correlation of virus abundance in sewage and processed food sources. The potential use of sewage for a virus survey is discussed in this study. Supplementary Information: The online version contains supplementary material available at 10.1007/s40858-023-00575-8.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...